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Monte Carlo likelihood in the genetic mapping of

complex traits

E. A. THOMPSON

Department of Statistics, GN-22, University of Washington, Seattle, Washington 98195, U.S.A.

SUMMARY

Many of the likelihoods arising in the analysis of complex genetic traits, particularly in linkage analysis,
are computationally infeasible. Where exact likelihoods cannot be computed, Monte Carlo estimates of
likelihoods may provide a satisfactory alternative. Although simulation on pedigrees is straightforward,
simulation conditional upon observed phenotypic data is not. However, recent advances in Markov
chain Monte Carlo methods have provided a method well suited to this problem. From realizations of
underlying genes, simulated under a genetic model, conditional upon observed data, a Monte Carlo
estimate of this likelihood surface can be formed. Various sampler and model modifications are needed
to enhance the statistical efficiency of the Monte Carlo estimator; as these methods become increasingly
developed, this approach becomes a useful tool in resolving the genes contributing to the phenotypes

associated with genetically complex diseases.

1. INTRODUCTION

In statistical analyses of the genetic epidemiology of
complex traits a major limitation has been practical
and theoretical bounds on computational feasibility of
likelihood evaluation. In some quite standard appli-
cations, a single run on the LINKAGE program
(Lathrop et al. 1984) may take several months
(Schellenberg et al. 1992). For an ongoing study,
with continuing data collection, this is not acceptable.
In other potential applications, it can be shown that
exact evaluation of the likelihood would take millions
of years, even if computer speeds continued to
multiply at the same rate as over the past four
decades. Potential solutions include improvement of
the programs, improvement of the computational
algorithms, or a radically different approach to
likelihood assessment. Recently Cottingham et al.
(1993) have shown that fairly standard computer
science programming procedures can improve perfor-
mance of the LINKAGE program by an order of
magnitude. However, the immediate response of
practitioners is to wish to address a tenfold larger
problem. With the current algorithms, based on the
method of Elston & Stewart (1971), computer times
increase exponentially with pedigree complexity,
numbers of alleles and numbers of loci modelled;
computer science cannot keep up with increases in
genetic complexity of models for traits and DNA
markers.

Owing to the infeasibility or impracticality of exact
likelihood computation, approximate methods are
often used. One of the most long-standing is that of
Hasstedt (1982) for mixed models; another is that of
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Hoeschele et al. (1987) for ordered categorical data
determined by an underlying quantitative liability.
Most recently Curtis & Gurling (1993) have proposed
an approximation to multilocus linkage likelihoods
using a combination of pairwise log-likelihoods. For
practical purposes, these methods may be excellent,
but without some method of exact computation this is
impossible to assess. One approach which provides
such an assessment is Monte Carlo likelihood, in
which exact evaluation of likelihoods and likelihood
ratios is replaced by a Monte Carlo estimate. For data
analysis, Monte Carlo methods may not provide a
practical solution, but for assessment of alternative
approximations they are ideal, as, provided the
Monte Carlo experiment is run for long enough, the
exact likelihood can be computed to an arbitrary
degree of accuracy.

Monte Carlo estimates of integrals or expectations
are not new, either in general (Hammersley &
Handscomb 1964) or in genetic linkage analysis
(Thompson et al. 1978), but in Monte Carlo
likelihood approaches the problem is complicated
by the fact that realizations are required from a
probability distribution with unknown normalizing
constant, this normalizing constant being precisely
the required likelihood. Thus methods of Markov
chain Monte Carlo (Hastings 1970) are applicable;
their application in genetic analysis raises many
interesting statistical questions. Note that these
statistical questions addressed here are not those of
the likelihood estimation of genetic models from data.
Rather they are the statistical properties of the Monte
Carlo procedures used to estimate the likelihood
function.
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2. MONTE CARLO LIKELIHOOD IN MISSING
DATA PROBLEMS

The statistical problems involved in fitting genetic
linkage models to trait data, Y, may be viewed as
latent variable or ‘missing data’ problems. Were the
underlying haplotypes (multilocus genotypes) of all
individuals observable, estimation would be trivial,
but only the trait data (phenotypes) and single-locus
marker genotypes of some individuals are observed.
We denote the observed trait and marker data on a set
of related individuals by Y, additional latent variables
by X, and the genetic parameters (recombination
fractions, penetrances, etc.) by 6. The likelihood is

L(0) = Py(Y) =
S UPY,X) =) Py(YIX)Py(X). (1)
X X

Although the summation may be infeasible, the
latent variables X are to be chosen in such a way that
each term of the expression is easily computed. In fact,
X may contain both discrete and continuous
variables, but for simplicity of notation we restrict to
the case of a discrete sum. Now

_ Pp(Y,X)
BRSO @

and (Thompson & Guo 1991)
Y). (3)

L(6)  PoY) <P9<Y,X)
L(6y)  Pg,(Y) " \Py,(Y,X)

As the probability distribution (2) is known up to
the normalizing factor L(8) = Py(Y) Markov chain
Monte Carlo provides a method for providing N
dependent realizations X0 [=1,...,N, from
Py, (+]Y) which may be used in a Monte Carlo
estimator of the likelihood ratio (3):

N 0]
_I_Z P(?(Y,Xl) . (4)
N\ Py, (Y,X0)

This estimator (4) works well if 4 is close to g, but,
in comparing alternative genetic models, it is rarely
the local characteristics of the likelihood surface that
are of interest. Rather geneticists will with to compare
best fitting models within each broad class. These
models are widely spaced in the hypothesis space in
terms of the induced probability distribution on the
latent variables; a chain run at either hypothesis will
provide a very poor estimate of the likelihood ratio
relative to the other.

To overcome this problem, chains may be run at a
set of parameter combinations, 6g,0y,0s,...,0,
spanning the range between the two hypotheses of
interest, 6y and 6. Whereas realizations from chain 6;
could simply be used to estimate adjacent log-
likelihood differences L(;.1)/L(6;) or L(8;)/L(6;_1),
this would be wasteful. An importance sampling
approach allows one to use all the samples in a
combined estimate of log likelihood differences along
the chain 6, 01,0, ..., 0 (Geyer 19914). An intuitive
way to view this approach is as follows. Assume N;
realizations are taken from chain Py (-|Y). Rather
than retaining the chain parameter value correspond-

Py(X[Y)
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ing to each realization, the collection of realizations
are ‘pooled’, and the pooled sample is regarded as a
sample size ) ; N; from the weighted average of the

distributions indexed by 6y, ..., 0k, that is
Y
— N;Py (Y, X) exp(vj),
2N j=0 .
where v; = —log L(f;). Then we have an auxiliary

likelihood problem in which the unknown ‘para-
meters’ v; are estimated by maximum likelihood,
given the sample from this ‘mixture distribution’, or

equivalently by solving the equations

exp(—v;) =

Z ng(Y,X*)
e Sk NPy, (Y, X*) exp(v))
for j=0,...,K, (5

where the summation is over the total combined
sample of realizations X*. (These equations determine
the log-likelihoods v; only up to an additive constant,
so log-likelihood differences v; —vg, j=1,...,K
are estimated.) If this procedure is implemented
every realization contributes to the estimate of
L(6,) = exp(—v;) for all j in accordance with the
appropriate importance sampling weights (Geyer
1991a).

3. SAMPLING GENES ON PEDIGREES
(a) Gene drop and gene lift

Simulation on pedigrees pre-dates digital computers
(Wright & McPhee 1925), but the increasing power of
computing makes it a more useful proposition.
Simulation of the genes descending a pedigree has
been used in many studies, and is easily done. Genes
are assigned to the founders of the pedigree,
segregation of genes down the pedigree is simulated,
and the required statistics relating to the resultant
current genes are computed. This approach has been
used to provide estimates of structural parameters
such as inbreeding coeflicients (Edwards 1967), or to
investigate gene loss in endangered species (MacCluer
et al. 1986).

However, simulation in the presence of genetic data
on current individuals is far harder. The number of
possible genotypic configurations on a pedigree is
immense, and the proportion that are compatible with
data observed on individuals is minute. Normally
data are observed on the final members of a pedigree,
the current individuals, and the ancestors are
unobserved. Simulating the descent of genes from
these ancestors to the current individuals will very
seldom produce a genotypic configuration compatible
with current data: simple-minded rejection sampling
is useless.

An alternative is to attempt ‘gene lift’, simulating
backwards from current data, according to some
probabilities for parents conditional upon offspring,
and then reweight to the true probabilities under the
genetic model, using importance sampling. This is
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seldom successful in large problems. If there are  effect in each individual is successively updated,
multiple alleles, incompatibilities will arise and the  conditional upon the remainder.

simulation cannot proceed. Even for the simulation of

a rare recessive allele, for example, where there will be

no incompatibility problems, gene lift does not work. = 4. IMPROVED MODELS AND SAMPLES

The failure of the algorithm to be able to look at
distant ancestry, and so bring together the multiple
descendant copies of a rare allele, means that  The Gibbs sampler for underlying genotypes works

(@) Burn-in problems with the Gibbs sampler

realisations of ‘gene lift’ are very far removed from  well in simple examples, but can run into serious
those having non-negligible probability under the  problems. If phenotypes rather closely define under-
genetic model. lying genotypes of sampled individuals, the total

space of genotypic configurations on all individuals
can be difficult to sample efficiently. An example is
given by the mixed model for cholesterol levels on a

Alternatives to ‘gene drop’ and ‘gene lift’ are ‘gene 232-member pedigree (Thompson et al. 1993). The
updating’ samplers. We review briefly the Metropolis-  model is that cholesterol levels (Y) depend additively
Hastings class of algorithms (Hastings 1970) for  on effects (p) due to a segregating major gene
generating dependent realizations from a probability (genotypes G), on additional polygenic heritable
distribution Py(X) on a space &, where Py(-) may be  effects (Z), and independent residuals (e). Fixed
known only up to a normalizing constant. For each X effects (y) due to covariates (f) such as age and sex
in & a ‘proposal distribution’ ¢(-, X) is defined. Then,  can also be incorporated as fixed effects. Thus, the
if the process is now at X the next value is generated =~ model is

(b) Markov chain genotype updating

THE ROYAL
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3‘2 as follows: Y = y(f) + p(G)Z +e. (6)
EQ 1. Generate X* from the proposal distribution  In sampling, the latent variables are taken as the
Q_L-) q(-, X). major genotype and the polygenic value of each
8< é 2. Compute the Hastings ratio number of the pedigree.

oL (X, X*)Py(X*) Provided the initial latent variable configuration
_|Z :q___’; 0) 7(0 . .

=< X*, X)Py)(X) (G9,Z), belongs to a set M of configurations in
EE 125 o which certain individuals with very high observed

Note that £ depends only on the ratio of densities  cholesterol values do indeed carry the gene for high
Py(+), so that any normalizing constant need not be  cholesterol reliable results are obtained. These

comput?d. - ) configurations have a joint log-probability,
3. With probability r = min(1, ) the process moves  log Py (Y,G,Z), between —1802 and —1812. There
to X* and with probability (1 —7) it remains at X. are also a large number of configurations, B, with

The algorithm of Metropolis et al. (1953) is a  1084(Y,G,Z) between —1950 and 1970, and these
special case; if ¢(X*,X) = ¢(X,X*) the Hastings 8!V¢ 2 quite different picture of the log-llkcllhooq
ratio reduces to the odds ratio of the proposal state  differences between alternative models. Moreover, if
X* versus the current state X. The Gibbs sampler the chain is .started in B it can take as many as
(Geman & Geman 1984) is also a special case, in IQQO 000 pedigree scans b'cfore, quite suddenly over a
which X* differs from X in only one component X; period of less than 30 pedigree scans, log Py, (Y,G,2)
say, and X; has the distribution Py(X;[X_;) where will increase by about 150, anq (G,Z2) rf:aches M
X_; denotes the components of X other than X;. In (figure 1). On the other han.d,' if started in M, the
this case r = £ = 1; in the Gibbs sampler there is no ~ Process has not, in tens of millions of scans, lf:ft M
rejection step, but steps are necessarily small, with Thus the total weight of B, each realization
only one component of X being changed at each

step.
Returning to the missing-data likelihood formu- - 18004 o
lation, we require realisations from Pp(X|Y), a M; log P(Y,G,Z) approx. — 1805

distribution known up to the normalizing constant
Py(Y). Unfortunately, in genetic examples the con-
straints on X imposed by Mendelian segregation
mean that any attempted proposal distribution that 1000 switch at block 1402
makes multiple changes to the current value of X is

likely to result in a configuration with zero prob-
ability. However, one-variable-at-a-time updating

— 1850

THE ROYAL
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B; log P(Y,G,Z) approx. — 1955

) . ~1950 1 memp—————t o
methods, such as the Gibbs sampler, are well suited . FC I A TR
to this sampling problem, at least in proposing feasible !
configurations. The genes and heritable effects in an B 500 1000 1500 2000

individual are dctgrml{led by tho‘se in his parents, an.d Figure 1. Block means of log Py, (Y,G,Z) under the Gibbs
jointly with those in his spouse, influence those in his sampler, when the initial configuration is chosen poorly.
offspring. This neighbourhood structure means that Each point is a mean over 200 realizations, with realizations
the Gibbs sampler is easy to implement; each genetic taken at intervals of 4 pedigree scans.
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contributing only ¢ 1% times as much as a single point
in M, must be negligible.

In general, the problem is not so easily solved.
There are diagnostics for being in a low-density part
of the space. For example, one indication is that
realizations deriving from chain run at parameter
values 0; have a higher posterior probabilities of
deriving from the distribution indexed by some other
0, than by ;. Another is that, as runs get longer,
the batch-mean autocorrelation diagnostic statistics
become more extreme. However, even if the existence
of a region B is diagnosed, it must still be validated
that any region such as B, in which the probability
density may be very much smaller, does not contain a
significant part of the total probability mass.

(b) Choice of latent variables

There are two approaches to obtaining more precise
Monte Carlo likelihood ratio estimates. One involves
better samples, the other involves changing the model
framework. It seems natural to take all individual
genotypes and heritable effects as the latent variables in
a complex genetic model (Guo & Thompson 1992).
However, this may not be statistically effective. In some
cases, the joint probability of data Y and latent variables
may be computable for a subset of variables X, say X(y),
where X = (X(y),X(2)). That is, it may be possible to
integrate or sum analytically over the variables X ). In
this case, although a sampler generating the full X
values from a chain with equilibrium distribution
Py(X|Y) may be employed, it is possible to use only
the Xy values in the Monte Carlo estimate of likelihood
(4) or from (5). Examples of this discussed in Thompson
(19944); note, however, that as the generated X values
are dependent, there is no guarantee that the exact
integration of some variables reduces the Monte Carlo
variance of the estimated likelihood surface. An
alternative approach is to change the latent variables;
for example, Thompson (19944) uses as latent variables
only the indicators of grandparental origins of genes, for
each individual at each locus. In fact, Lange &
Matthysse (1989) use both genotypes and grandpar-
ental indicators in their Metropolis formulation; thus
use only of genotypes as in Guo & Thompson (1992)
could be regarded as having integrated over grand-
parental gene origins, while use only of gene origins as in
Thompson (19944) requires integration over genotypes.

(e) Improved samplers for genetic problems

An alternative approach to more efficient Monte
Carlo likelihood estimation is to construct samplers
which sample the space of genotypic configurations
more effectively than does the Gibbs sampler. The
constraints of Mendelian genetics limit the proposal
distributions that can be usefully employed in the
Metropolis-Hastings algorithm. Further, constraints
on the feasible genotypic configurations can lead to
failure of irreducibility of the Gibbs sampler. Even
where irreducible, the Gibbs sampler may be
impractical, as the Markov chain can be very poorly
mixing. Sheehan & Thomas (1993) address the

Phil. Trans. R. Soc. Lond. B (1994)

reducibility problem by modifying zeros in either the
genotype transmission probabilities or the genotype—
phenotype correspondence (penetrances) and using
importance weighting (in fact with zero/one weights)
to obtain realizations from the correct conditional
distribution of genotypes given the data. Lin (1993)
showed how penetrance modifications could be
limited and made individual-specific. Earlier, Geyer
(19915) had proposed Metropolis-coupled samplers,
and Lin (1993) proposed coupling a Gibbs sampler for
the true genetic model to one for the penetrance-
modified model, providing an irreducible sampler
with the correct equilibrium distribution, without any
reweighting being required. Although resolving
problems of reduciblity, these samples remain imprac-
tical on large pedigrees.

Lin (1993) also proposed a class of proposal
probabilities proportional to 1/7 powers of the local
conditional probabilities used in the Gibbs sampler,
where T is a ‘temperature’ parameter. Lin et al.
(1993) use Metropolis coupled samplers at varying
temperatures and with modified penetrance matrices,
coupled with a Gibbs sampler for the true model.
Using the three ideas of coupled samplers, individual-
specific and genotype-specific penetrance modifica-
tions, and ‘high temperature’ Metropolis-Hastings
proposal distributions, the speed of sampling the
space of genotypic configurations is greatly
enhanced, particularly where genetic marker loci
have several alleles.

Geyer & Thompson (1993) use a different form of
penetrance modification and coupling of samplers to
sample the genotypic configurations underlying the
cystic fibrosis trait on a 2024 member pedigree.
Instead of ‘swapping’ configurations between sam-
plers with the appropriate Metropolis-Hastings
acceptance probabilities, the single chain of realiza-
tions ‘jumps’ from sampler to sampler, in a procedure
akin to the simulated tempering procedure proposed
by Marinari & Parisi (1992). The distributions of
each sampler form a sequence from a degenerate
sampler providing regeneration points to the Gibbs
sampler for the true model. Intermediate samplers
were defined by varying the penetrance probabilities,
the influence of the observed data increasing from
none at the degenerate ‘hot’ chain to complete at the
true model.

These ideas of Geyer (19916), Lin (1993) and Geyer
& Thompson (1993) provide samplers that are far
more effective than the simple Gibbs sampler for
problems of sampling genotypic configurations on
large pedigrees with data observed on some indivi-
duals. Their ideas have not been implemented in the
examples described in this paper, but many of them
could be combined with alternative choices of latent
variables, or with the model framework described
below, to improve further the performance of Monte
Carlo likelihood ratio estimators.

(d) A class of fractional penetrance models

An alternative modification of genetic models lies in
the idea of fractional contributions of genes to traits.
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This also is a form of penetrance modification, related
to those proposed by Lin et al. (1993) and by Geyer &
Thompson (1993) to obtain valid and -effective
samplers for otherwise intractable genetic models on
large and complex pedigrees. However, here it relates
rather to defining a sequence of models to use for
likelihood ratio estimation between disparate end-
points as in (5). Consider again the simple additive
mixed model for a quantitative genetic trait (6).
Having estimated the parameters within this class of
models, we may then wish to compare with a model
without major-gene effects, or without polygenic
effects.

To do so we need a set of models at which to
sample, connecting the estimated mixed model to
either of these two nested extremes. One way to do
this is to change the parameters underlying the
probability distributions of G and/or Z. However,
this leads to severe problems in sampling and in
importance weighting estimates, as G and Z values
generated under one model may have infinitesimal
probability under an adjacent one, particularly at the
endpoints. For example, one can eliminate polygenic
effects by setting the prior variance of the Z values to
zero, but then any non-zero Z values generated under
another model are impossible under this endpoint.
Likewise, one way to eliminate major gene effects, is
to give all individuals the same genotype with
probability one, by setting one allele frequency to
one, but then any realizations in which other alleles
are present have zero probability.

Fractional contributions of genes provides a more
successful solution. Rather than modifying the prior
distributions of G and Z the relation to phenotype is
modified to

Y = p(f) + Mp(G) + AZ + e,

where A; and ), range from 0 to 1. Thus a sequence of
models is defined by varying A; and/or Ay. The only
parameter of the genetic model that is altered is the
variance of the residuals e which is modified to
maintain a constant marginal variance of each
component of Y as the A-values change. Only
Py (Y|G,Z) contributes to the estimation of likelihood

- 1000

- 1100 A

- 1200

- 1300

T T T T T T T T T T T L
00 005 01 02 03 045 055 07 08 09 095 1.0

Figure 2. Mean values of log P (Y|G), j=0,...,11 for
samples G obtained using the Gibbs sampler and the
fractional penetrance model with Ay = 1 and the 12 x-axis
values of A;. (Latent variables Z are integrated analytically
in this example.)
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0.4 4
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0.0

045 055 07 08 09 085 10
Figure 3. For the same samples as for figure 2, mean
posterior probabilities that realizations G obtained under
the Gibbs sampler for Py (-[Y),;j=0,...,11 derive from
Py (-|Y),j* =0,...,11. The example shows good proba-
bility overlap between successive samplers.

ratios since the realized G and Z have equal prior
probability under all models in the set.

In tests, this fractional penetrance model has
proven quite successful. Returning again to the
cholesterol pedigree of Thompson et al. (1993),
varying Ag with A; = | has very efficiently confirmed
previous results on the log-likelihood difference
between the mixed model maximum likelihood
estimate and major gene models. Moreover, varying
Ap with Ay = 1 has provided accurate estimates of the
much larger log-likelihood difference between the
mixed model and polygenic models. For this case,
figure 2 shows the mean contributions log Py, (Y|G)
for samples G obtained from each sampler Py (-[Y)
while figure 3 shows, for the same sets of realizations,
the mean posterior probabilities that realizations G
obtained from each sampler Py (-[Y) derive from the
sampler Py, (-|Y). (In this example, N; = 2000 for
each of the 12 samplers, and the chosen values of A;
label the 12 sets of realizations in figures 2 and 3.)
Finally, in cases where the pedigree is too complex to
obtain base-point log-likelihoods of either major-gene
or polygenic models and where no latent variables
can be integrated analytically, varying A; = Ay will
provide a Monte Carlo estimate of the log-likelihood
relative to a pure environmental model.

5. CONCLUSION

This paper has demonstrated the scope for Monte
Carlo likelihood in the mapping of complex traits,
where exact likelihood computation is often infeasible.
Much remains to be explored concerning the
statistical properties of Monte Carlo likelihood
surfaces, but some practical concerns and solutions
are presented here. Methods to improve performance
include the alternative specification of latent vari-
ables, better samplers, and alternative definition of
intermediate models. These approaches are not
mutually exclusive. For example, a fractional pene-
trance sequence of models can be easily combined
with the simulated tempering approach of Geyer &
Thompson (1993). Using methods in combination, it
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seems that effective methods can be found for
previously intractable problems.

I am grateful to Charles Geyer for many helpful discussions
on Monte Carlo likelihood functions and on ‘gene lift’.
Research supported in part by NIH grant GM-046255.
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Discussion

C. A. B. Smutn (University College London, U.K.).
Professor Adrian Smith uses a Monte Carlo method
with Gibbs sampler for multilocus linkages estimation.
Is his method related to that used by Professor
Thompson?

E. A. THOMPSON. Professor C. A. B. Smith and others
raised the question of the relationship of this paper to
the Monte Carlo approaches to Pedigree Analysis of
Ott (1989), Stephens & Smith (1993), and Kong et al.
(1992). Ott (1989) and Ploughman & Boehnke (1989)
both developed methods for simulating marker data
conditionally upon trait data, but only for trait
models for which exact probabilities can be com-
puted on the pedigree. Their objective was estimation
of the power of a potential linkage study, conditional
upon observed trait data. That also was the focus of
Lange & Matthyse (1989), whose Metropolis Markov
chain Monte Carlo approach is much more closely
related to that presented here. Kong et al. (1992) is
closer in objective to this paper, and presents an
alternative approach to Monte Carlo estimation of a
likelihood ratio function based on independent
realizations and importance sampling. Conversely,
the Gibbs sampler methods of Stephens & Smith
(1993) is an McMc approach but on a different state
space. There the sample space of the MCMC contains
also the parameters of the genetic model, and a
marginal posterior probability distribution for genetic
linkage parameters is estimated.

Another question raised in discussion concerns the
interpretation of the latent variables Z in the genetic
model of this paper. Although the model used was
that of the classical additive genetic (polygenic)
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effects, it is worth noting that any random effects of  preferred example for comparative studies of alter-
known correlation structure could be used in place of  native methods. However, we are now using these
this specific polygenic form of Z. For example, a  methods in conjunction with other approaches in the
common family environment effect could be incorpo-  analysis of data in a current study of Apolipoprotein B
rated. Thus, except in the specific example, Z should  levels and other possible quantitative indicators of
be viewed as a generic random effect component. In  heart disease.

application to real data there is usually neither
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